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Abstract

The Advanced Internal Rating Based (AIRB) approach is more and more frequently applied by banks.
Bank analysts decide to use their own approach to calculate basic risk parameters such as Probability
of Default (PD), Exposure at Default (EAD), and Loss Given Default (LGD). The problem of small
samples in LGD estimation is always a challenge for researchers and analytics. The paper proposes
the basic LGD model based on splitting recoveries into two classes of recoveries: close to 0 or close
to 1, and based on that split the construction of the LGD model with the combination of two binary
models. The main advantage of the paper is, however, addressing the unresolved cases incorporated in
the LGD estimation process by using a Bayesian approach which assumes a beta distribution of further
recoveries for unresolved cases. An additional advantage of the paper is that the proposed modelling
approach for LGD is illustrated on real data for mortgage loans for one of the European banks.
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1. Introduction and background

The most challenging problem in Loss Given Default estimation is the small sample (lack of data) and
unresolved cases-observations (unfinished workout period). In specific portfolios such as mortgages or
corporates, those challenges are always present and are not avoidable, and must be addressed.

In those situations, all statistical and econometric models based on large sample assumptions
will not work properly. The estimates will always be biased due to small sample properties and will
inadequately account for the censored, unresolved exposures in the portfolio.

According to the European Banking Authority EBA Guidelines (EBA/GL/2017/16) on estimation
of risk parameters, such as PD or LGD, the defaulted exposure is given much attention BCBS (2017).
LGD estimation should cover resolved cases as well as unresolved ones. In this context, the methodology
proposed in this paper covers this urgent issue. As mentioned in the Guidelines, to have a realistic view
of long-run average LGD unresolved (incomplete recovery) cases should be also included. The values
of future recoveries are not observed, but should be estimated based on the already completed history
of resolved cases. In this way, “long-run average LGD” will be more objective. It is also mentioned in
the Guidelines that long-run LGD should be based on adjusted observed LGD also taking into account
unresolved cases. This is the case when the moment of default is quite recent and the recovery process
could not be finalized (i.e. it is shorter than the assumed maximum workout period). It is also important
to mention that risk drivers such as length of recovery process and status of recovery process should
also be included in LGD estimation as well as collateral. The proposed Bayesian approach addresses this
challenge. This approach is focused on building one model including unresolved and resolved cases at
the same level in the modelling process.

The modelling approach proposed in this paper is a two steps estimation procedure. The first
step is based on splitting recoveries into two groups of recoveries: close to 0 or close to 1. This general
observation of LGD distributions makes us construct an LGD model with the combination of two
binary models. The second step addresses the challenge when building the LGD model - the use
of unresolved cases in the estimation process. We apply a Bayesian approach which assumes a beta
distribution of further recoveries for unresolved cases. The Bayesian approach is also considered with
the LGD estimation for resolved cases with a proposed combination of two binary models.

The structure of the paper is as follows. Firstly, we provide a review of the existing literature about
LGD estimation, as well as literature discussing the Bayesian approach for LGD estimation and small
samples and unresolved cases as well. Secondly, we discuss the chosen modelling approach, while also
providing the classical model estimation. The next section contains the results of the Bayesian model
with beta distribution for LGD modelling. The final section provides the conclusions of our results and
some suggestions for further research.

2. Literature review

In the literature there are many formulas and different approaches for LGD modelling in the literature.
Many of them are based on Vasicek distribution or a similar approach. In Frye and Jacobs (2012) the
LGD function connects the conditionally expected LGD rate (cLGD) to the conditionally expected
default rate (cDR). In another proposal by Frye (2000) the recovery is a linear function of the normal
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risk factor associated to the Vasicek distribution. Pykhtin (2003) proposes parameterization of the
amount, volatility, and systematic risk of a loan’s collateral and infers the loan’s LGD. Tasche (2004)
assumes a connection between LGD and the systematic risk factor at the loan level. This idiosyncratic
influence is integrated. Giese (2005) makes a direct specification of the functional form linking cLGD
to cDR and Hillebrand (2006) introduces a second systematic factor that is integrated out to produce
cLGD given cDR. In another proposal Giese (2006) uses the beta distribution on the systematic
factor Y. Diillmann and Trapp (2004) propose the recovery rate to be modelled as a logit transformation
of a normally distributed random variable Y.

The most popular approach in LGD modelling is just computing averages for selected homogenous
groups-pools (Izzi, Oricchio, Vitale 2012), next is linear regression (Anolli, Beccalli, Giordani 2013;
Loterman et al. 2012) or other types of regressions such as beta regression (Huang, Oosterlee 2011).
This simple approach is of course preferred because it is clear and understandable for managers and
authorities. Quite recently, new, more complicated and advanced approaches are proposed in the
literature. Those proposals include machine learning methods, but also non-parametric methods as
simple and more promising in results. Unfortunately, those “black-box” models are not preferred by
regulatory bodies as they are not clear and understandable and interpretable for the customer. Recent
innovative and interesting applications include decision trees as more interpretable (Belotti, Crook
2007), or neural networks (Brown 2012) and Markov chains (Luo, Shevchenko 2013), as well as scoring
based methods (Van Berkel, Siddiqi 2012) or two-stage models (Brown 2012; Yao, Crook, Andreeva 2017;
Papouskova, Hajek 2019) and the k-NN non-parametric approach (Ptak-Chmielewska et al. 2023).

Another approach for LGD estimation is just a market-based approach. For researchers the market
data are relatively easily accessible. Implied LGD has been examined by some researchers using data
from different countries and markets such as BBB rated US corporate bonds (Bakshi, Madan, Zhang
2001) or for Argentinian government bonds (Andritzky 2005). Results for market derived LGD for
corporate bonds are characterized by high estimation errors and general low precision (Christensen,
Henrik 2006). That is why an internal approach based on the workout period and empirically realized
LGD is preferred. Unfortunately data for such estimates are not so easily accessible by academics and
researchers.

The most difficult problem with LGD modelling is the issue of unresolved cases. Some results based
on different portfolios show that it may take up to four years or longer from default to full recovery
(Kosak, Poljsak 2010; Hurt, Felsovaly 1998). The research shows the potentially long time period before
full recoveries are achieved. The simplest and therefore the most popular approach is just including
incomplete cases in modelling and treating those cases as complete (Baesens, Roesch, Scheule 2016).
Unfortunately this simplified approach may lead to a significantly different estimate of real LGD
values. Ptak-Chmielewska, Kopciuszewski and Matuszyk (2023) proposed a non-parametric and survival
approach for unresolved cases with promising results. The need to recognize the impact of unresolved
cases is clear from research. Finally, the relationship between recovery rates and economic cycles has
been researched by extrapolating recoveries for the LGD estimation for unresolved cases (Brumma,
Urlich, Schmidt 2014). For any method, a discussion of the assumptions regarding the treatment of
unresolved cases should also be provided according to Basel IV requirements (Nielsen, Roth 2017).

Data samples for LGD modelling in the small and medium enterprises (SME) segment or corporates
are rather small data samples (due to small number of defaulted exposure) and the literature on that
topic is also rare. There are some solutions discussed in the literature to manage the small sample issue.
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Some of the proposals concern the use of external data or change the time period and incorporate
future recoveries. One of the examples can be the proposal by Chalupka and Kopecsni (2009), who used
methods based on realized losses to extend small samples. The authors applied their solution on the
SME sector of the Czech Republic. They included a limited time period for recovery and assume a full
recovery when the proportion of the exposure was sufficiently high. Another application was proposed
by Zieba (2017) with an overview of methods of how to increase the sample size. This work was based
on a real LGD data sample and the author proved that the proposed extrapolation of recovery rates is
the most efficient way to increase sample size and improve the precision of LGD estimation.

The quite limited examples of the Bayesian approach for LGD modelling also support the value
added and new insight into this research area proposed by this paper. One of the potential examples
could be LGD estimation for the most difficult portfolios such as unsecured loans. A typical approach
in such a situation is just an estimation of two different models and a final calculation based on a two-
-step approach. However, this can be problematic because results must be combined together to make
the final predictions about LGD. The advantage of using the Bayesian approach in this situation is that
only a single hierarchical model can be estimated instead of two separate models. One of the examples
of using the Bayesian approach was found in the work by Bijak and Thomas (2015). The authors
used Bayesian methods and the frequentist approach for comparison. They applied their approach
to the data on personal loans from one of the largest UK banks. The posterior estimates of means of
parameters that have been calculated by the authors using the Bayesian approach were very similar to
the values calculated in the frequentist approach. The basic advantage of using the Bayesian model in
this case was the individual predictive distribution of LGD for each loan. The authors also calculated
the so-called down-turn LGD and stressed LGD.

The biggest value added of the proposed approach in this paper is the utilization of the Bayesian
approach. We propose the theoretical and methodological elaboration and application on real banking
data. For the Bayesian approach we elaborated and used beta distribution.

3. Basic logistic LGD models

The basic assumption is that overall LGD for the both resolved and unresolved cases is a random
variable. Assuming a distribution for the observed LGD allows to incorporate additional knowledge
to the model which is contained in the distribution parameters. As total recoveries for resolved cases
are known but are partially known for the unresolved ones, the final formula has to be different.
In the classical approach the resolved cases are used to derive the model formula. Next, the unresolved
ones are used to adjust the developed model. The current purpose in the paper is to present this new
approach and test it with real data. The direct inclusion of the entire population in the modelling
process makes the final model less biased. The currently proposed formula is the first attempt to apply
it to LGD modelling and check the results and the possibility of using it to solve other LGD issues.
The structure of the model allows much more information to be taken into account, such as external
knowledge of the independent variables, relations between coefficients, distributions for all parameters
included in the model, and the extension of the model structure towards any needs.

The data used for the modelling process comes from the years 2008 to 2018. They included 1,867
observations, of which 314 are unresolved, and 400 explanatory variables. The data was cleaned before
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being used for the modelling purpose in terms of excluding unintuitive variables, removing outliers,
and replacing missing information.

The main inputs to Bayesian modelling are two logistic models which predict LGD =0 and LGD =1.
These two models were built on the abovementioned data limited to resolved cases only. An important
phase of modelling was the removal of strongly correlated variables and those with various multivariate
and univariate relationships with the target variable. The models contain many application and
behavioural variables at the customer and collateral level. Detailed descriptions about the estimation
of logistic models were elaborated in a previous paper (Ptak-Chmielewska, Kopciuszewski 2023) and for
convenience also included briefly in the appendix.

Bayesian modelling allows data for resolved and unresolved cases to be combined, but all the
information from the data is provided by these two logistic models.

4. Beta Bayesian model for the total recoveries

Let us introduce the following basic markings, but notice that when referring to the end of the recovery
process, this also means an observation of no more than the maximum workout period.

EAD, is the exposure at Default for the i-th customer, it is assumed to be a customer related
deterministic value.

R . is the observed recovery reduced by costs and other charges discounted at the Default
moment, it is assumed to be a random variable.

R, ., is the total recovery reduced by costs and other charges discounted at the Default moment,
it is assumed to be a random variable, notice that it is equal to the R ,_for the resolved cases.

R, is the observed additional future recovery unobserved for unresolved cases, reduced by costs
and other charges discounted at the Default moment, it is assumed to be a random variable. It is
assumed to be 0 for resolved cases.

RR , is the observed recovery rate up to the end of the observation period, i.e. the end of the
recovery process for resolved cases and by the censored time for unresolved cases.

RR, ., is the overall recovery rate up to the end of the recovery process for the both resolved cases
and unresolved cases.

Suppose further that the total recovery R, , can be predicted from the linear model based
on the two logistic models developed in the previous section as follows:

R

total

a,+a,-LGD,+a, LGD, +¢,,, @)

2
total

where ¢ ~F(0, o), Fisany distribution family and o, is the variance of the total recovery.

Then the expected mean E(R,,,) equals the following linear formula with three degrees
of freedom:

E(Rmml):a()+al'LGD0-i-az’LGD1 )
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Suppose that R ,, can be predicted from the linear model based on the basic information on
the time (f) spent in the default state, the inclusion of which is recommended by the regulations,
and additionally other explanatory variables:

k
Radd:(T_t)'f(zbj'xj)"—gadd 3
where: a
€0 ~F(O, 02,), F isany distribution family,

oL is the variance of the additional unobserved recovery,

t is the time spent in default up till the censored time moment,

T is the maximum workout period (90 months) for unresolved cases and the duration between
the last month in the recovery process and default date for resolved cases, hence ¢ = T for resolved cases
and consequently R ,,is 0,

x,, - X, are the explanatory variables predicting the future part of recoveries,

by, ..., b, are the parameters at explanatory variables in this formula,

(9 is the function of the linear combination of the k explanatory variables.

Then the three random variables R , , R, and R, canbe combined into one formula, assuming

that the variance of the R, is o, =0c ., + 0., and ¢, and &, are independent.

s

Ry =R = R @

Take into account that R , is the observed recovery in the experiment for both the resolved and

unresolved cases, while R, , is the total recovery amount and hence it is equal to R ,_for resolved

cases. R ,, equals 0 for resolved cases and is the precited part of recovery for unresolved ones.

All these three variables are treated as random. The main idea of the model is to combine all resolved

and unresolved cases into one mathematical formula even if the two groups of cases are not consistent.
Let’s introduce now the recovery ratio for the observed part of the recoveries as follows:

obs, i

Rabs i =
" EAD,

for i-th facility is assumed to be a variable with the beta distribution

RR, . ~B(a,pB), a,>0, >0 ©)

obs, i

Let’s make the mean and the variance of the variable dependent on the above parameters «;, 5, .
Note that all calculations are for the whole portfolio, including both the resolved and unresolved cases.
It is calculated conditionally under the given two binary models and additional explanatory variables
including the time spent in default up till the censored time moment.

E(R . —R., |LGD, .LGD. .l.% ....x,
(RRobs,i | LGDO,,‘; LGDl,ia tia x1,ia- “ey Xk’i) = ( total, i add, i | Z’ Li> 7 xl’l xk”) (6)
E(RR,,,, | LGD, , LGD, st X, %, ) = —i @)
3 s s 5 s a, +/7),'

Formula (6) results from the definition of the variable RR while formula (7) results from

obs, 7
the beta density function assumed for the variable.
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The beta family is the most appropriate family of distributions for the LGD parameter given its
range of values and the wide class of distributions in that family.
Combining formulas (2), (3), (5) and (6), we get:

k
o a+a-LGD, +a, LGD,,~(T~1,) -f(zj:lbj : x,,,.)

i (8)
a+p EAD,

From the definition of R ,, it follows that z, = T for the resolved cases and it is 0 in the above
formula.
Similarly, another equation can be derived from the variance formula for the beta distribution:

— 2
_ Var (Rtntal,i Radd,i ) O-obs

Var(RRabs,i |LGDO,i’LGl)1,i’ ti’xl,i""’xk,i) (EAD )2 = (EAD )2 ©
Var(RR., |LGD, .LGD. = 2P,
ar( obs,i | 0,i° 10> L xLi""’xk,i) - (a. +/J,.)2‘ (a_ +/J,. +1) (10)

Formula (9) results from the definition of the variable R
the beta density function assumed for the variable.
And next, combining formulas (9) and (10), we get:

while formula (10) results from

obs, i’

a[ ) /))l — ajb.v

(a,+B) (¢, +f,+1) (E4D,) )

Given both equations, parameters a, and f3; can be determined by data values and regression
parameters f3,,..., B,. The current goal is not to derive the exact formulas for them because these
equations can be incorporated into one Bayesian model without explicitly specifying a, and 3.

However «; and f3; can be determined from formulas (7) and (10) as follows:

E(1-E) E(1-E)

a=|"—"2-1|E, B=|"—L-1|(1-E 12
( 7 ) B ( 7 (1-E) (12
where E, V; are the expected value and the variance of recovery rate RR , ; conditionally under

LGD, ,LGD, ,t,x,,,...,x,;. The E; and V., in turn can be given by the following formulas:

k
+a,-LGD, +a, LGD, ~(T—1)- ( b - )

Ei _ ao al 0,i a2 1,i ( :) f ijl T xj,t ’ V: _ Gjbs . (13)

EAD, (EAD,)

Taking into account formulas (12) and (13), beta parameters can be determined both using linear
model parameters (formulas (1) and (3)) and explanatory variables from data.
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5. Results of the Beta Bayesian model

The set of potential variables for LGD prediction was determined on the basis of other calculations,
including correlation coefficients and temporary simpler models, and then the following variables were
selected as potential ones for the final LGD model predicting the future recoveries:

EAD - Exposure at Default,

LTV_dynamics - Loan to Value dynamics: change compared to the previous period,

dpd_12 - days past due in last 12 months,

MTH_SINCE_LIMIT_START - months since start of using limit,

LTV_current — Loan to Value current,

past_due_amt_avg — average amount overdue,

F_BALANCE_RATIO - financial balance ratio in percent.

The SAS algorithm to discover the final LGD formula assuming the best choice from the set
of explanatory variables is as follows:

All prior distributions were assumed to be noninformative. Two of them for parameters a2 and b0
were assumed to be positive as follows:

%let pars = a0 al a2 b0 bl,

%let r_add = b0 + bl * F_BALANCE_RATIO,

ods graphics on,

proc mcmc data = data_lgd_bayes_beta ntu = 1000 nmc = 20000 propcov = quanew

diag = ALL outpost = post_kalib seed = 10 plot=density dic monitor = (&pars),

ods select PostSumInt mcse ess TADpanel densityPanel,

parms &pars 1,

R_add = max(0, & r_add),

E=(0 +al *1gd_0 + a2 * 1gd_1-n_months_to_def_end * R_add)/ead;

V = (&s * &s)/(ead * ead) (* &s is the empirical variance *)

alpha = max(0.0001, (E*(1-E)/V-1)*E);

beta = max(0.0001, (E*(1-E)/V-1)*(1-E));

prior a0 ~ uniform(-100, 100);

prior al ~ uniform(0, 100);

prior a2 ~ uniform(-100, 0);

prior b0 ~ uniform(0, 100);

prior bl ~ uniform(-100, 100);

model rr_obs ~ beta(alpha, beta);

run.

Table 1 shows the final model posterior parameters and the quality of the model measured by R2.
The discriminatory power of the model could only be checked for the resolved cases. The best quality
is achieved for the model with f_balance_ratio as the explanatory variable. R2 is around 24% and
it proves the good model quality in comparison with the results in the LGD literature. In addition,
looking at the posterior distribution of the model parameters, it seems that f_balance_ratio is the best
choice as well because the variance for a,, a,, a, parameters is not large and the distribution is quite
smooth, symmetric and not concentrated on the border of the interval.

The model with EAD as the explanatory variable was unstable and the procedure yielded
no results. Other models with more than one variable also gave poor results.
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Table 1
Posterior parameters and the quality of the selected models

Variable Parameter Mean Zg?:;;i 95% HPD interval

a, 0.5321 0.0112 0.5077 0.5517
None a, 0.5076 0.0121 0.4840 0.5309 15.39%

a, -0.1514 0.0321 -0.1878 -0.0757

b, 0.00149 0.000469 0.000683 0.00235

a, 0.5497 0.00815 0.5342 0.5655

a, 0.1115 0.0246 0.0537 0.1543
LTV_dynamics a, -0.2388 0.0113 -0.2613 -0.2171 18.88%

b, 0.0114 0.00331 0.00667 0.0174

b, -0.0165 0.00459 -0.0247 -0.0100

a, -0.0557 0.00221 -0.0602 -0.0514

a, 0.00261 0.00249 3.965E-7 0.00769
Dpd_12 a, -0.00041 0.000407 -0.00124 -1.61E-7 <0

b, 16.1514 12.0823 0.0282 39.1365

b, -53.0651 21.9138 -90.8928 -12.4377

a, 2.8917 0.1322 2.7137 3.1646

a, 0.0281 0.0418 0.000067 0.0983
g&i}SINCE—LIMIT— a, -3.3368 0.2534 -3.8506 2.9759 <0

b, 0.2116 0.1135 0.0897 0.4569

b, -99.3539 0.8823 -99.9959 -98.0733

a, 2.2932 0.1003 2.1543 2.4776

a, 0.000557 0.000565 4.978E-7 0.00166
LTV_current a, 2.4464 0.0628 -2.5326 -2.3301 <0

b, 0.0781 0.0100 0.0577 0.0901

b, -0.1291 0.0339 -0.1775 -0.0683

a, 0.5496 0.00807 0.5334 0.5647

a, 0.1201 0.0236 0.0693 0.1640
past_due_amt_avg a, -0.2345 0.0119 -0.2571 -0.2114 18.87%

b, 0.000366 0.000321 6.485E-8 0.00101

b, -46.4239 29.5188 -93.9533 -0.00367

a, 0.5495 0.00800 0.5334 0.5650

a, 0.4893 0.00955 0.4719 0.5091
F_BALANCE_RATIO a, -0.2364 0.0115 -0.2583 -0.2134 24.25%

b, 7.2793 3.9723 0.0637 14.3804

b, -56.6705 25.5214 -99.8236 -14.7716
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Figures 1-7 present the posterior densities for the model parameters. These figures and Table 1
constitute the basis for selecting the most appropriate explanatory variable predicting the future
recovery.

Figure 1
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Figure 3
dpd_12
Posterior density plots
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Figure 5
LTV_current
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Figure 6
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Figure 7
F_balance_ratio
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The most meaningful for LGD estimation is current Loan to Value and it’s dynamics.
The proportion of granted loan and current loan (part already paid) compared to the value of collateral
informs about the risk of recovering the remaining part. The significance of days and amount past due
is also quite obvious. More days past due in the recent period increases the risk of credit loss. A higher
balance ratio decreases potential credit loss.

The conclusions are given in the next section.

6. Summary and future research

The basic conclusion from the paper is that the combination of the classical approach with the Bayesian
approach is possible and gives intuitive and promising results. In addition, it can be successfully
applied to small samples on the example of LGD estimation and for unresolved cases. Using two binary
models to predict two LGD modes close to 0 or 1 is a good idea to include more information to predict
the LGD and differentiate the customer risk profile associated with these two groups (see also Ptak-
-Chmielewska, Kopciuszewski 2021). These two models were then established as input parameters to the
Bayesian model. The biggest challenge and the most important point in the modelling procedure was
the idea of using both resolved and unresolved cases in one LGD Bayesian model. This helped to avoid
amodel bias as can be seen in the classical approach, where unresolved cases are used for the later stage
of the modelling step to adjust the final results. The approach of using unresolved cases in one model
with resolved ones can be compared in its concept to using reject cases in the reject inference problem
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where the default status is unknow in the same way that future recoveries are unknown here. The final
model quality was measured by R2. The discriminatory power of the model could only be checked for
the resolved cases. The best quality is achieved for the model with f_balance_ratio as the explanatory
variable. R2 is around 24% and proves the good model quality in comparison with the results in the
LGD literature (Zhang, Thomas 2012; Matuszyk, Mues, Thomas 2010). In addition, looking at the
posterior distribution of the model parameters, it seems that the f_balance_ratio is the best choice as
well because the variance for parameters is not large and the distribution is quite smooth, symmetric
and not concentrated on the border of the interval.

The promising results have also inspired us to deep dive into future research on unresolved cases
and small sample LGD measurements with the application of more advanced methods.
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Appendix

The following logistic regression models were developed (see also Ptak-Chmielewska, Kopciuszewski

2023).

Table 1
The model predicting LGD =0

Parameter

Intercept

The limit breach flag

Change of residence flag

The number of employment months

3 months savings

Refinancing flag
Initial Loan to Value (LTV)

Ratio of 6 months savings to 3 month savings

LTV dynamics (3 months to 6 months)
Past due amount dynamics (3 months to 6 months)

Estimate p-value
2.9371 < 0.0001
-0.8732 0.0008

3.689E-7 0.0318
-7.76E-7 0.0052

1.404E-6 0.0084

-1.07E-6 0.0453
2.6757 0.0003
2.8906 < 0.0001

0.9741 0.0021
1.299E-6 0.0030

Table 2

The description of variables for the model predicting LGD =0

Variable Description

The limit breach flag

Change of residence flag

The number of employment months
3 months savings

Ratio of 6 months savings to 3 month
savings

Refinancing flag
Loan to Value (LTV)
LTV dynamics (3 months to 6 months)

Past due amount dynamics (3 months
to 6 months)

Binary flag informing whether the customer has exceeded
the limit

Binary flag informing whether the customer changed
the residence

The number of employment months
Savings from the last 3 months

The ratio of the last 6 months savings to the last 3 month
savings

Binary flag informing about the refinancing the exposure
LTV calculated in the application process

Ratio of LTV calculated 3 months ago and LTV calculated
6 months ago

Ratio of past due amount in the last 3 months and the last
6 months




Credit loss modelling using beta distribution... 329

Table 3
The quality measures for the model predicting LGD =0

Association of predicted probabilities and observed response

Percent concordant 77.6 Somers’ D 0.552

Percent discordant 224 Gamma 0.552

Percent tied 0.0 Tau-a 0.065

Pairs 204 750 C 0.776
Table 4

The model predicting LGD =1

Wald

Parameter Estimate Chi-Square Pr > ChiSq
Intercept -4.0969 159.5913 < 0.0001
Cover value after Household Prices Index (HPI) -2.68E-6 16.2198 < 0.0001
Outstanding dynamics (last 6 months) 9.43E-7 17.8508 < 0.0001
Industry (Weight of Evidence (WOE) grouped) 0.1252 123.4599 < 0.0001
Life insurance flag 0.8718 16.5867 <0.0001
LTV current 3.0650 102.2729 < 0.0001
Table 5

The description of variables for the model predicting LGD =1

Variable Description

Cover value after HPI Collateral value index with HPI
Outstanding dynamics (last 6 months) Dynamics of outstanding for the last 6 months
Industry (WoE grouped) Customer industry transformed with WoE

Binary flag indicates whether the customer has life

Life insurance flag insurance

LTV current Current LTV
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Table 6
The quality measures for the model predicting LGD = 1

Association of predicted probabilities and observed responses

Percent concordant 77.8 Somers’ D 0.557
Percent discordant 22.2 Gamma 0.557
Percent tied 0.0 Tau-a 0.215

Pairs 672 060 C 0.77
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Zastosowanie podejscia bayesowskiego z wykorzystaniem
rozkladu beta do modelowania strat kredytowych

Streszczenie

Jednym z parametréw wyliczanych przez banki stosujace zaawansowane podejscie w wewngtrznych
ratingach (advanced internal rating based — AIRB) jest strata wynikajaca z niewykonania zobowiazania
(loss given default - LGD).

Podejscia do szacowania straty wynikajacej z niewykonania zobowigzania moga by¢ rdzne.
Podejscie preferowane zaréwno przez nadzorce, jak i naukowcow opiera si¢ na wielkosci odzyskéw
zobowiazan kredytowych. W takim podejsciu najbardziej problematyczne jest uzyskanie informacji
0 zdarzeniach niewykonania zobowigzan. W przypadku niektdrych portfeli kredytowych (np. hipotecznych)
liczba takich zdarzen jest bardzo ograniczona. Wyniki uzyskane z zastosowania modeli statystycznych
do kalkulacji parametru LGD beda obcigzone mata liczebnoscia proby. Kolejnym wyzwaniem przy
szacowaniu parametru LGD jest uwzglednienie przypadkéw niezakoriczonych jeszcze proceséw
odzysku.

Do estymacji LGD czgsto stosuje sie regresje i modele taczone, takie jak regresja liniowa
i logistyczna. Zaproponowany w artykule model estymacji LGD opiera si¢ na podziale odzyskéw na
dwie klasy: wartosci bliskie 0 lub wartosci bliskie 1. Finalny model jest wigc kombinacja dwoch modeli
regresji binarnych.

Tradycyjne metody estymacji LGD nie uwzgledniaja jednak podejscia bayesowskiego,
wykorzystujacego informacje a priori. Celem tego badania jest wykorzystanie podejscia bayesowskiego
uwzgledniajacego zatozenia rozktadu beta dla niezakoriczonych proceséw odzysku.

Proponowana metoda bierze pod uwagg specyfike danych dla LGD zaréwno w przypadku dwu-
modalnego rozktaduy, jak i niepewnosci wynikajacej z niezakoriczonych proceséw odzysku. Prowadzi
to do redukeji obcigzert modelu i bardziej precyzyjnych oszacowan. Potaczenie podejscia klasycznego
z metodologia bayesowska jest mozliwe i prowadzi do wynikéw zgodnych z oczekiwaniami. Propono-
wane podejscie moze byc¢ stosowane w przypadku matych liczebnie préb danych. Najwigkszym wyzwa-
niem i jednoczesnie najwazniejszym punktem tej pracy byto jednak wykorzystanie zaréwno zakoriczo-
nych, jak i niezakoriczonych proceséw odzysku. W podejsciu klasycznym przypadki niezakoriczonych
procesdw odzysku sa wykorzystywane na dalszych etapach modelowania do skorygowania finalnych
wynikow estymacji. Niewatpliwg zaletg badania jest réwniez prezentacja proponowanego podejscia
do modelowania LGD na rzeczywistych danych o portfelu kredytéw hipotecznych dla dtugiego okresu.

Stowa kluczowe: mate préby, LGD, podejscie bayesowskie, rozktad beta, niezakoriczony proces odzysku






