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Streszczenie

Niniejszy artykuł jest poświęcony empirycznej analizie 
parytetu siły nabywczej, niepokrytego parytetu stóp 
procentowych oraz parytetu realnych stóp procentowych 
(parytetu Fishera) pomiędzy Polską a Niemcami. 
Międzynarodowe parytety badano wspólnie w ramach 
skointegrowanego modelu wektorowej autoregresji. 
Analiza wykazała, że parytety oraz ich liniowe 
kombinacje nie znajdują odzwierciedlenia w danych 
empirycznych. Badanie pozwoliło zidentyfikować dwie 
długookresowe relacje równowagi, z których jedna 
stanowi relację homogeniczności krajowej (tj. polskiej) 
i zagranicznej (tj. niemieckiej) inflacji oraz krajowej 
stopy procentowej, a druga dotyczy krajowej realnej 
stopy procentowej oraz zagranicznej inflacji. Ponadto 
pokazano, że zmienna opisująca odchylenie realnego 
kursu walutowego od parytetu siły nabywczej jest słabo 
egzogeniczna, a stopa procentowa w Niemczech jest 
silnie egzogeniczna.

Słowa kluczowe: analiza kointegracji, PPP, UIP, parytet 
Fishera, Polska

Abstract

This paper analyses empirically the purchasing power 
parity, the uncovered interest parity and the real interest 
parity (Fisher parity) between Poland and Germany. The 
international parity relations are investigated jointly 
within the cointegrated VAR framework. Our analysis 
fails to find evidence that the parities, or any linear 
combinations of them, hold for our data set. We identify 
two long-run equilibrium relations: one imposing a long-
run homogeneity restriction on the domestic (i.e. Polish) 
and foreign (i.e. German) inflation and the domestic 
interest rate and one that brings together the domestic 
real interest rate and the foreign inflation. Another 
interesting result is the weak exogeneity of the deviation 
of the real exchange rate from the PPP and the strong 
exogeneity of the German interest rate.
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1. Introduction

With its accession to the European Union (EU) on 1 
May 2004, Poland took on a commitment to join the 
Economic and Monetary Union (EMU) upon fulfilling 
the convergence criteria set in the Maastricht treaty. The 
timing of the EMU accession depends to a large extent on 
the country’s economic policy decisions, which affect the 
level and stability of prices, long-term interest rates, the 
fiscal position and the nominal exchange rate. However, 
the adoption of the euro is inevitable, as none of the 
ten countries that became EU members in 2004 has the 
formal right, as that exercised by Denmark and the United 
Kingdom, to opt out from EMU arrangements.

For a candidate country with a flexible nominal 
exchange rate regime, as it is the case with Poland 
currently, joining the euro implies giving up monetary 
policy independence. The question arises, then, whether 
the economy is “ripe” for the common monetary policy. 
This problem has usually been analysed from the 
point of view of the optimum currency area theory (see 
Mundell 1961; McKinnon 1963; Kenen 1969), which 
weighs the benefits of the accession to a monetary union 
(increased microeconomic efficiency) against its costs 
(potentially more painful adjustment to asymmetric 
shocks). A number of empirical studies in this area 
concentrate on the symmetry of shocks and shock 
transmission mechanisms in a given country and its 
potential partners in the monetary union (see De Grauwe 
2003 for a survey).

This paper asks a similar question – to what 
extent Poland has already achieved a sufficient degree 
of convergence with the current euro area members 
– but applies a different perspective, namely that of 
international parity relations: the purchasing power 
parity, the uncovered interest parity and the real interest 
parity. The basic logic behind this approach is that the 
three parities between two economies hold if goods and 
asset markets of these economies are perfectly integrated, 
i.e. when goods and capital are perfectly mobile. If this is 
the case, the economies in question can form a common 
currency area without fearing serious turbulence in case 
of asymmetric shocks; indeed, the probability of such 
shocks is very low under such conditions.

There is vast empirical literature on the parity 
conditions that we are analysing but usually each of them is 
treated separately, whereas in our paper they are modelled 
jointly within the cointegrated vector autoregressive (VAR) 
framework. This joint modelling approach is originally due 
to Juselius and MacDonald (2004a), who scrutinised the 
parity relations between Germany and the US. Essentially, 
the analysis in this paper is an application of their 
approach to the Polish data – to the best of our knowledge, 
the first such one.

Thus, we analyse empirically to what extent 
Poland’s macroeconomic aggregates of interest are 

interrelated with those of the current EMU countries. The 
most important empirical questions are the following: do 
the international parity relations postulated by economic 
theory hold for Poland relative to the euro area? What are the 
common stochastic trends driving inflation, interest rates and 
the real exchange rate against the EMU? Do the developments 
in Poland significantly affect those in the common currency 
area, or can the latter be treated as exogenously given when 
analysing the Polish economy? The EMU is represented 
by Germany, the largest of its members and a neighbour of 
Poland, which makes it the most natural reference economy 
for studying Poland’s international trade and payments 
relations with the euro area.�

The remainder of this paper is structured as follows. 
The next section presents the three international 
parity relations, briefly reviews the relevant literature, 
and derives hypotheses that can be tested within 
the cointegrated VAR framework. Section 3 visually 
inspects the data used in the VAR model, which is 
presented in Section 4. Section 5 reports the outcome 
of the cointegration analysis. Section 6 summarises the 
main findings and concludes.

2. International parity conditions�

The purchasing power parity (PPP) is one of the most 
extensively studied relationships in the international 
economics. In its strong form it can be written as follows:

� (1)

where pppt  is the deviation from PPP (alternatively, 
the real exchange rate multiplied by -1), pt and *

tp  are, 
respectively, domestic and the foreign price levels, and 

 
st is the spot exchange rate (in price notation, i.e. the 
price of foreign currency in units of domestic currency). 
All lowercase variables in this paper, except for the 
bond yields or interest rates, are in logs so that their first 
differences can be interpreted as the rates of change in 
the underlying variable. Empirically, the PPP condition 
is verified if pppt  is a stationary process.

The second important relationship is the uncovered 
interest parity (UIP):
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where 
tE  denotes the expected value given the 

information set available at time t, Δ is the difference 
operator and m

ti  and *m
ti  are, respectively, the domestic 

�   Admittedly, interest rates and exchange rates have been heavily influenced 
by financial flows, where the German mark was not always the dominant cur-
rency. Nevertheless, of all EMU countries Germany seems to be the best single 
reference country due to its economic size and geographic proximity to Poland. 
For similar reasons, Germany was treated as a natural anchor country in virtu-
ally every article written in the 1990s on the optimality (or simply viability) of 
the future monetary union in EC/EU countries (see, e.g. Bayoumi, Eichengreen 
1992a; 1992b and the vast literature that was pioneered by these papers). 
�   The beginning of this section draws heavily on Juselius, MacDonald (2004a, 
Section 2).
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and the foreign bond yields with maturity m.� Thus, the 
UIP postulates that the expected rate of denomination of 
the domestic currency should be equal to the home vs. 
foreign interest spread (the terms “interest rates”, “bond 
yields”, and “Treasury bill rates” are used interchangeably 
in this paper). Assuming rational expectations, we 
have:

� (3)

where εt is a white noise error term. Combining (2) and 
(3) leads to:

� (4)

Under the assumption of rational expectations, 
testing the UIP amounts to testing whether εt  in (4) is 
stationary. The third parity relation that we are interested 
in is the real interest parity (RIP):

� (5)
or rather its testable version:

� (6)

where
 m

tr  and *m
tr

 
are the domestic and the foreign re-

al bond yields with maturity m, respectively. If the RIP 
holds, then vt in (6), which is the empirically observed 
real interest differential between home and foreign co-
untry, should be a stationary process. Now, a useful rela-
tion is the Fisher decomposition stating that the nominal 
bond yield is the sum of the real yield and the expected 
inflation rate over a given period (t  to  t + m):

� (7)

Using the Fisher decomposition, equation (6) can be 
rewritten in the following way:

� (8)

Again assuming rational expectations, we have:

� (9)

i.e. the RIP holds empirically if the difference between 
the interest spread and the inflation differential is sta-
tionary.

The economic rationale behind the three parities 
is given by arbitrage on goods and asset markets. 
Specifically, if goods are perfectly mobile across 
countries, then arbitrage ensures that their prices – after 
accounting for expected changes in the value of the 
various currencies – are ultimately equalised, which 
is reflected in the PPP condition. Further, if capital is 
perfectly mobile across countries, then arbitrage ensures 
that yields on assets of these countries – again after 
accounting for expected changes in the value of their 
respective currencies – are also equalised, which is 
reflected in the UIP. It can be shown that the PPP and 

�   Note that UIP may apply to short or to long bond yields; see Juselius, Mac-
Donald (2004a) for a discussion.

the UIP, taken together, imply the RIP (see Lambelet, 
Mihailov 2005); in other words, arbitrage on goods and 
asset markets ultimately leads to an equalisation of real 
returns on assets. An implication that the three parities 
hold is, thus, that the goods and asset markets of two 
economies are to a large extent integrated. This, in turn, 
means that these economies can share a currency and 
a common monetary policy without fearing serious 
turbulence when large asymmetric shocks occur. Indeed, 
the probability of such shocks is very low, because 
economies whose markets are integrated also share a 
common business cycle and usually have similar output 
structures (see Mongelli 2005).

The three parities have been analysed very 
extensively using various methods; theoretical and 
empirical studies in this field are discussed at length 
in the meta-studies of MacDonald (1998) and Sarno, 
Taylor (2002).� The general upshot of this literature is 
that the parities, taken alone, seldom hold empirically 
in typical data samples. Only for very long time series, 
spanning a century or so, or for panel data of large 
dimensions can the parities be empirically verified.

As mentioned in Section 1, the empirical 
methodology in this paper follows the approach put 
forward by Juselius and MacDonald (2004a), who 
scrutinise the international parity relations (the three 
discussed above and the term structure of interest rates) 
between Germany and the USA. The analysis strongly 
rejects the stationarity of single parities, but by allowing 
the latter to be interrelated it recovers their stationarity. 
The authors also argue that the apparent non-stationarity 
of the simple parities is due to very slow adjustment to 
sustainable exchange rates. The approach of Juselius 
and MacDonald is based on earlier work by Juselius 
(1990; 1992; 1995), Johansen and Juselius (1992), and 
MacDonald and Marsh (1997), and it was also applied to 
Japan vs. the USA by Juselius and MacDonald (2004b). 
Another important exception to the rule that empirical 
research in this area concentrates on only one of the 
parities is a recent paper by Lambelet and Mihailov 
(2005), who also model the three parities jointly using 
various single equation and system equation estimation 
methods. The authors refer to the parities as the triple-
parity law, stressing that they are closely interrelated. 
Robust evidence is found that the parities hold “in the 
long run, on average, and ex post”.

The joint modelling of the various parities within 
the cointegrated VAR framework can help understand 
the forces driving the entire system of variables of 
interest. We believe that the VAR methodology itself is 
superior to structural simultaneous equation models, 
because all relevant variables entering the parities are 

�   For recent empirical analyses of the parities for the case of emerging econo-
mies and in particular of the Central and East European countries see e.g. Bekő, 
Boršič (2007); Sideris (2006); Giannellis, Papadopoulos (2006); Singh, Banerjee 
(2006).
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jointly determined so that none of them can from the 
outset be treated as exogenously given, and because the 
direction of causality is uncertain. The cointegration 
approach, moreover, allows one to determine not 
only the short-run dynamics of the system, as in the 
case of (structural) VAR models, but also the long-run 
equilibrium relations between the variables. Specifically, 
our aim is to find cointegration relations that reflect the 
three parity relations. If the simple parities do not hold, 
i.e. if the linear combinations of variables that define 
the parities are non-stationary, we can still test whether 
stationary linear combinations of these non-stationary 
relations exist.

Before we proceed to the empirical analysis, an 
important caveat is in order. The above equations define 
the three parities in their strong form, which does not 
allow for persistent departures of the real exchange rate, 
the nominal interest spread and the real interest rate from 
the levels implied by the respective parity condition. The 
weaker form of these equations, in contrast, allows for 
permanent (or at least persistent) departures from these 
levels. Such departures can result from institutional 
or structural characteristics of economies in question. 
Empirical tests of the parities in their weaker form 
consist in testing whether the equations (4) and (6) each 
include a non-zero constant term or a deterministic time 
trend, with the term εt in equation (4) and vt  in equation 
(6) being white noise (zero mean) error terms. Similar 
remarks apply to equation (1), where the term pppt  need 
not be stationary but can also be trend-stationary. This 
is the strategy that we follow in our empirical analysis. 
After all, it only seems natural that the RIP between 
Poland, a former centrally planned transition economy, 
and Germany, a stable market economy, cannot hold 
in its strong form throughout any reasonable sample 
period, which must cover years of catching up and thus 
of falling real interest differential. The same applies to 
the remaining two conditions.

3. A visual inspection of the parities

Before analysing the international parities presented in 
Section 2 within the cointegrated VAR framework, we 
first inspect them graphically. An ocular analysis of va-
rious linear combinations of the relevant time series can 
suggest a first tentative answer to the question whether 
the parities hold empirically. The underlying time se-
ries in Figures 1 to 4 are defined in Section 5 and their 
levels and differences are depicted in Figure A.1 in the 
Appendix.

From the cross plot of the nominal exchange rate 
and the price differential between Poland and Germany 
(see the upper panel of Figure 1) it is difficult to tell 
whether and to what extent the former has mirrored the 
latter. The reason for this is that the prices seem to be 

integrated of order 2, I(2); this was confirmed by formal 
tests which will be discussed in Section 5. The middle 
panel of Figure 1 depicts the deviation from PPP (the 
real exchange rate multiplied by -1)� and the inflation 
differential. If the PPP held, then the real exchange rate 
and the price differential would move together and the 
deviation from PPP would be stationary. As can be seen 
from the figure, there is hardly any evidence of PPP 
holding.

However, the picture might be blurred by the fact 
that the sample period has been the time of intensive 
transition from a centrally planned to a market economy 
and high productivity growth in Poland relative to 
Germany. As a consequence, both the real exchange rate 
and the price differential have exhibited pronounced 
trends: the former a positive�, the latter a negative 
one, which might make it difficult to tell whether the 
exchange rate is at least trend-stationary or not. The 
bottom panel of Figure 1, which depicts the detrended 
series, shows that the deviation from PPP is not even 
trend-stationary.

Further we look at the depreciation rate and the 
home vs. foreign interest differential (Figure 2). If the 
UIP held, the two series would move together and the 
difference between the two would be stationary (see 

�   The deviation from PPP in Figure 1 and the rate of depreciation in Figure 2 
were scaled by the factor 10 to ease interpretation of the cross plots.
�   Note that pppt is the real exchange rate multiplied by -1 so that a positive 
trend in pppt means a real appreciation trend, although a rise in st means nomi-
nal depreciation of the home currency.

Figure 1.  The behaviour of prices and 
exchange rates

Source: IMF International Financial Statistics, NBP, own calculations.
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equation (4)). The upper panel of the figure is again 
difficult to interpret because the interest rate spread is 
trending (which is again a by-product of the economic 
transition), whereas the depreciation rate is not. The 
bottom panel shows the detrended series�, which reveal 
a similar picture: there is hardly any evidence supporting 
the UIP.

The third condition to look at is the RIP, postulating 
that the deviation between the real interest rates in the 
two countries should be stationary. Figure 3, especially 
the bottom panel depicting the series smoothed by 
taking 12-month moving averages, shows that this is 
probably not the case, as the deviations between the two 
series are rather persistent. Recall that using the Fisher 
decomposition, the RIP condition could also be written 
in the form (9), i.e. as a relation between the nominal 
interest rates and the inflation differential, which are 
graphed in Figure 4. Here, the impression is that the 
difference between the two series is I(0).

To summarise, the impression from the graphical 
analysis is that the three parities presented in Section 2 
do not hold. Obviously, a visual inspection is only 
an informal way of investigating whether the given 
relations are stationary. The results of formal tests will 
be discussed in Section 5; before that, the next section 
will present the cointegrated VAR model.

4. The cointegrated VAR model�

The j-dimensional cointegrated VAR(k) model in the vec-
tor equilibrium correction (VEC) form is given by the fol-
lowing equation:

�
(10)

where xt is a j x 1 vector of endogenous variables, Dt is 
a b x 1 vector of deterministic components (such as a 
constant, a linear time trend, seasonal or intervention 
dummies, or strictly exogenous variables), εt is a j x 1 
vector of i.i.d. Gaussian error terms, and Π, Γi (i = 1,…, 
k – 1), and Φ are coefficient matrices of appropriate 
dimension. Based on the assumption that all variables 
in (10) are at most I(1), the cointegration hypothesis 
can be formulated as a reduced rank restriction on the 
matrix Π:

� (11)

where a and β are  j x r coefficient matrices with full co-
lumn rank and r ≤ j, which implies that the rank of  Π is 
also r. As the variables in xt are I(1), their first differences 
on the left hand side of (10) are stationary; therefore, all 
terms on the right hand side of the equation must also 
be stationary. Thus, the matrix Π translates the non-sta-

�   The series were detrended by means of an OLS regression on a constant and 
a linear time trend. Each detrended series was computed as the difference be-
tween the original series and the trend term times its estimated coefficient.
�   The cointegrated VAR analysis is discussed in depth in Juselius (2006).

Figure 2.  Depreciation rate and home 
vs. foreign interest rate spread
      

Source: IMF International Financial Statistics, NBP, own calculations.

Figure 3.  Real interest rates

Source: IMF International Financial Statistics, NBP, own calculations.

Figure 4. Home vs. foreign interest rate  
spread and inflation differential

Sources: IMF International Financial Statistics, National Bank of Poland, 
own calculations
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tionary vector xt-1, into a stationary one, Πxt-1. More 
precisely, it is the expression β’xt-1 that defines the sta-
tionary linear combinations (cointegration relations) of 
the I(1) vector xt-1, whereas the matrix α describes how 
the variables in the system adjust to the equilibrium er-
ror from the previous period, β’xt-1. The rank r of the ma-
trix Π gives the number of cointegration relations (ste-
ady states, long-run equilibrium relations) between the 
j variables of the VAR system, whereas j – r gives the 
number of common stochastic trends that drive their be-
haviour. The former can be interpreted as the pulling 
forces and the latter as the pushing forces of the system; 
each time a variable is pushed away from the steady sta-
te, it is pulled back to it. The analysis in the next sec-
tion aims at finding cointegration relations between the 
variables of interest that can be given a meaningful eco-
nomic interpretation, and at identifying the common sto-
chastic trends.

The vector of variables that are relevant for our 
analysis is defined as follows:

�
(12)

where
tp  is the Polish (“home country”) consumer price 

index,
*
tp 	 is the German (“foreign country”) consumer price 

index,

ti 	 is the Polish Treasury bill rate,
*
ti 	 is the German Treasury bill rate,
ts 	 is the spot exchange rate (defined as PLN/DEM).

The data are monthly, not seasonally adjusted, 
and cover the period 1994:1 to 2006:1. All series 
except for the exchange rate are taken from the 
IMF International Financial Statistics whereas the 
exchange rate is the end-of-month rate as announced 
by the National Bank of Poland.� From January 1999 
onwards, the PLN/DEM exchange rate is represented 
by the PLN/EUR rate, divided by the irrevocable 
DEM/EUR conversion rate. The Treasury bill rates 
are not the usual annualised rates but monthly 
rates so they are directly comparable to the monthly 
changes in the remaining variables. Our choice 
of the proxy for long-term interest rates was not 
straightforward. Ideally, we should have used long 
(e.g. ten-year) government bond yields. However, 
first emissions of longer-term government bonds 
in Poland took place in 1999 so the time series are 
rather short.10 As the Treasury bill rate is the only 
interest rate that has been available throughout the 
whole sample period, we could only use this rate 
as a proxy for long bond yields. The data in levels 
and in differences are depicted in Figure A.1 in the 
Appendix.

�   When average monthly exchange rates are used instead of end-of-month 
rates, the qualitative results of the analysis are identical and the quantitative 
results are very similar.
10   This problem is typical of Central and East European former centrally 
planned economies.

Both the graphical analysis of the time series in the 
previous section and the formal tests to be discussed 
in the next section suggest that the price variables are 
I(2), whereas our model is based on the I(1) assumption. 
Therefore, we transformed the data so that the resulting 
series are at most I(1), while at the same time preserving 
information about the long-run trends driving the 
prices.11 The transformed vector of variables whose joint 
behaviour is to be explained within the cointegrated 
VAR framework now becomes:

� (13)

where pppt was defined in Section 2. Note that the 
VEC model is defined for differenced data, which me-
ans that the price variables in the vector Δxt are dif-
ferenced twice:

� (14)

The point of departure for our analysis is the 
following stylised scenario. In a neoclassical world 
we would expect prices of goods, capital and foreign 
exchange to be driven by no more than two different 
stochastic trends. These could be defined e.g. as 
cumulated supply and demand shocks, or as cumulated 
domestic and foreign shocks. Alternatively, one trend 
could be associated with shocks to the current account 
and the other with capital account shocks. Therefore, we 
would expect the rank of the matrix Π to be equal to 3. 
However, in a world with nominal rigidities, barriers to 
trade with goods and to capital and labour movements 
across countries, asymmetric information, risk aversion 
etc., there might be more than two common stochastic 
trends driving our variables. In a similar data set for 
Germany and the US, Juselius and MacDonald (2004a) 
identify a third common trend associated with the 
special role of the US dollar in the international monetary 
system, which manifests itself in agents’ willingness to 
hold dollars irrespective of the developments in the US 
economy. The presence of a similar trend, which the 
authors term a “safe haven” or portfolio balance effect, 
in the Polish-German data seems plausible because of 
the traditionally important role of the German mark as a 
medium of exchange and, especially, as a store of value 
in the formerly centrally planned economies of Central 
and Eastern Europe. In that case the rank of Π would be 
equal to 2.

To summarise, we expect to find two or three 
cointegration relations, and, correspondingly, three or 
two common stochastic trends driving the system. More 
specifically, if the simple parities discussed in Section 2 
describe the variation in our data correctly, then they can 
be modelled individually because the relations defining 
them are stationary by themselves. From the graphs in 
Section 3, we reckon that the parities do not hold for 
our data set. Therefore, we aim at finding out whether 

11   See the discussion in Juselius, MacDonald (2004a).
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there exist stationary linear combinations of the simple 
parities. In other words, we seek to find parameter 
values for a, b and c such that:

� (15)

or, alternatively:

� (16)

define stationary equilibrium relations which pull the 
system variables whenever they are pushed away from 
equilibrium. Note that the simple parity relations are 
special cases of the above equations as they result from 
setting two of the parameters a, b, c to zero and nor-
malising the remaining parameter. We expect the ste-
ady-state relations found in our data to be special ca-
ses of equations (15) and (16), or perhaps the equations 
themselves.

5. The empirical analysis12

A. Specification and estimation of the unrestricted VAR model

As a first step of our analysis, we specified and estimated 
the unrestricted VAR model presented in Section 4. By 
setting the maximum lag length to two, we were able 
to obtain a parsimonious model with well-behaved re-
siduals. We based our choice of the lag length primarily 
on residual analysis, although we also checked the in-
formation criteria and performed lag reduction tests.13

In terms of deterministic components, the model 
was specified so as to include an unrestricted constant, 
which means that the data in levels show trending 
behaviour but the differenced data have no trend. This is 
exactly what the graphs of levels and differences of our 
time series show (see Figure A.1). Originally we included 
a trend term restricted to appear in the cointegration 
space in order to account for the possibility that the 
trends in data do not cancel out in the cointegration 
relations. Long-run variable exclusion tests showed, 
however, that the trend term could be excluded from the 
cointegration space without loss of information.

Apart from the constant, centred seasonal dummies 
and other dummies were included. Specifically, we used 
innovational dummies to account for large interventions 
as well as a shift dummy restricted to lie in the 
cointegration space, C1995:05. The latter picks up a level 
shift in the equilibrium relation involving the Polish 
bond rate, which we believe to have taken place in May 
1995. The shift, whose occurrence is suggested by our 
data, can be put down to important structural changes 

12   All results presented in this paper were obtained using CATS in RATS, ver-
sion 2 (see Dennis et al. 2005).
13   The Schwarz Criterion pointed to k = 1 and the Hannan-Quinn Criterion to 
k = 2; the lag reduction tests, however, suggested a longer maximum lag length. 
The results are not reported here to save space but, like any other results, are 
available from the author upon request.

in the monetary regime in Poland. Specifically, on 16th 
May 1995 there was a changeover to a crawling bands 
exchange rate regime with a ±7% fluctuation band. 
Moreover, starting from 1st June 1995 the Polish zloty 
became convertible in accordance with Article VIII of 
the Articles of Agreement of the International Monetary 
Fund (IMF 1945). The unrestricted estimate of the long-
run matrix  Π, with significant coefficients typed in bold 
face, is given in Table A.1.a in the Appendix.14

B. Determination of the cointegration rank

The second step of the analysis consisted in the de-
termination of the cointegration rank, r, i.e. the num-
ber of steady-state relations between the variables of the 
system. As the choice of the cointegration rank is cru-
cial for all subsequent analysis, we used all information 
that was available from the data before deciding upon 
the “correct” rank.15 The only formal test that we ap-
plied was the trace test, or the Johansen test16, whose re-
sults for the model described above are reported in Ta-
ble A.2.a in the Appendix.17 The largest two eigenvalues 
are significantly different from zero at every standard si-
gnificance level; the significance of the third-largest eige-
nvalue is borderline. The trace test thus points to r = 2, 
but at this point we cannot exclude the possibility that 
the third cointegration relation is also stationary. The re-
ason is the fact that the trace test has low power to re-
ject the unit root hypothesis when the true root is lower 
that but near one, i.e. when it is in the “near unit root re-
gion”. The low power problem is aggravated by our re-
latively small sample size.

Therefore, we need to use other sources of 
information concerning r. As a first sensitivity check, 
we recalculated the trace test for a different model 
specification, namely one that includes no dummy 
variables except for seasonal dummies. The results of 
this test are reported in Table A.2.b in the Appendix. 
The test this time very clearly points to r = 2: with a 
p-value of over 0.8, the significance of the smallest three 
eigenvalues cannot be rejected.

Secondly, we looked at graphs depicting the 
individual cointegration relations of the unrestricted 
model (see Figure A.2.a in the Appendix) to assess 
whether they look stationary. The first two cointegration 
relations behave like stationary processes, the opposite 
holds for the last two. The third relation is of special 
interest because if it looked stationary, then we would 
consider r = 3 in spite of the above-reported results of 

14   Prior to estimation, additive outliers (measurement errors) were removed 
from the time series of the German price level; the figures in the previous sec-
tion and in the Appendix depict the corrected data.
15   All the tests and procedures used here are discussed at length in Juselius 
(2006, ch. 6).
16   See Johansen (1996).
17   We simulated the asymptotic distribution of the trace test statistics using the 
automatic CATS procedure with 1,000 random walks and 10,000 replications.
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the trace tests. As can be seen from the figure, this is 
hardly the case. The two cointegration relations of the 
model where the cointegration rank was restricted to 2 
(see Figure A.2.b in the Appendix) seem again to be very 
stationary, which again points to r = 2 .

Thirdly, we computed the roots of the companion 
matrix for different values of r (see Table A.3 in the 
Appendix). Note that choosing a given r automatically 
leads to j – r unit roots, which does not necessarily mean 
that there are j – r stochastic common trends in the data. 
Looking at the largest eigenvalues for different choices 
of r reveals that for r ≥ 3 , the third-largest eigenvalue 
is near unity, whereas the fourth and the fifth are 
distinctly far from the unit circle. This leads us to the 
tentative conclusion18 that the trace test has picked up 
the “correct” cointegration rank.

A further source of information on the cointegration 
rank is the unrestricted estimate of the matrix a and 
more specifically, the significance of its parameters. 
As can be seen from Table A.4 in the Appendix, which 
gives the unrestricted estimates of a given different 
values of r, the coefficients in the first two columns have 
generally high t-ratios, but the third column contains 
only one coefficient that is borderline significant.19 
This can again be interpreted as evidence that the third 
cointegrating relation might be stationary, although 
rather borderline so.

Furthermore, we used the recursively calculated 
trace test statistics (see Figure A.3 in the Appendix) 
to draw conclusions on the cointegration rank. The 
upper two lines, depicting the trace test statistics for the 
two “most stationary” cointegration relations, exhibit 
pronounced linear growth, whereas the other three 
remain roughly constant as more and more observations 
are added to the base period. This result again suggests 
that r = 2.

Finally, one can draw on economic theory to 
hypothesise about the number of cointegrating 
relationships in our model. As argued in Section 4, we 
expected the variables in our system to be driven by two 
or three stochastic common trends, and therefore the 
cointegration rank to be equal to three or two, which is 
consistent with the results discussed above. Thus, based 
on all sources of information we conclude that the rank 
of the matrix  P and thus the number of steady-state 
relationships between our variables of interest is equal 
to two. The estimate of P based on this reduced rank is 
given in Table A.1.b.

18   The conclusion is only tentative because we do not know the distribution 
of the eigenvalues, which makes it impossible to test which values are signifi-
cantly different from unity.
19   Note that the exact distribution of these coefficients is unknown. If the cor-
responding equilibrium relations are stationary, the t-statistics are distributed 
as Student’s t and in the non-stationary case as Dickey-Fuller’s τ.

C. Specification tests

Prior to the actual cointegration analysis we performed 
various specification tests of the estimated VAR mo-
del to check the assumption of the error terms being in-
dependently normally distributed. The results of these 
tests, both for the full rank and the restricted rank VAR 
model, are reported in Table A.5 in the Appendix. An 
important point to note is that valid statistical inference 
is sensitive to violation of certain assumptions, such as 
autocorrelated or skewed residuals and parameter in-
constancy, and quite robust to violation of others, such 
as residual heteroskedasticity or excess kurtosis.

The most important assumptions regarding the 
residuals are therefore those of no autocorrelation and 
zero skewness. As can be seen from the table, none of 
the tests rejects the former hypothesis for the whole 
system. As for the latter, normality is strongly rejected 
for the whole system and for equations explaining the 
Polish inflation rate and both bond rates. This result 
is, however, primarily due to the fact that the kurtosis 
of the respective empirical distributions is too large 
to be associated with normal distribution, whereas 
the skewness seems to be less of a problem. Table A.5 
shows that the residuals from the equation explaining 
the Polish interest rate exhibit ARCH effects, whereas 
no such effects are detected in any the other equation 
or the system as a whole. All in all, we conclude that 
the assumption of independent multivariate normal 
distribution of the residuals is by and large confirmed 
by the data.

Furthermore, Table A.5 reports goodness-of-fit 
measures for the whole model (trace correlation) and for 
individual equations (determination coefficient, R2). The 
trace correlation is fairly large and the same holds for R2 
for the equations explaining the inflation rates and the 
Polish bond rate. The low values of R2 for the remaining 
two equations can be explained by the weak exogeneity 
of the German bond rate and the deviation from PPP (see 
Section 5.D).

The third assumption that is crucial for valid 
statistical inference based on a VAR model is that the 
sample period defines a reasonably constant parameter 
regime. To check this, we performed various recursive 
tests of parameter constancy for the reduced rank model 
(r = 2): the recursively calculated test for constancy of the 
log-likelihood function, the recursively calculated trace 
test statistics, eigenvalues and transformed eigenvalues, 
the max test of constant beta, and the 1-step prediction 
test.20 Virtually all tests, whose results are not reported 
here to save space21, show that the model’s parameters 
have been constant throughout the sample period. This 
is especially true with regard to the concentrated model, 

20   All tests are extensively discussed in Juselius (2006).
21   With the exception of the recursively calculated trace test statistics dis-
cussed in the last section, see Figure A.3 in the Appendix.
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i.e. one where the short-run dynamics, Γ1Δt-1, and 
deterministic components, ΦDt, have been concentrated 
out.

The results presented in this section and the 
previous one suggest that our VAR model satisfies the 
I(1) assumptions, which postulate that (i) the rank of 
the matrix Π is equal to r, (ii) the companion matrix has 
exactly j – r unit roots, corresponding to the stochastic 
trends that drive the system variables, (iii) the residuals 
are independent, (iv) the sample size is large (our 
relatively small sample size is accounted for by the 
Bartlett correction of various test statistics) and (v) the 
parameters of the VAR model are stable throughout the 
sample. These conditions are the prerequisite for the 
Granger representation theorem to hold, i.e. for the VAR 
model to have a moving average representation (see 
equation (17) in the next section).

D. Testing restrictions on long-run parameters

The next step is to test restrictions on parameters of the 
long-run structure, i.e. of the matrices α and β. The po-
int of departure for all tests discussed below are the es-
timates of α and β subject to rank restriction r = 2. The 
parameters of the former matrix are termed adjustment 
coefficients because they describe how the variables of 
the system adjust when they are pushed away from the 
steady state. An important test is that of a zero row in α, 
which is tantamount to weak exogeneity of the variable 
corresponding to that row. The hypothesis of long-run 
weak exogeneity, or no levels feedback, of a variable 
xit for the long-run parameters β means that the varia-
ble xit has influenced the long-run stochastic path of the 
other variables in the system but has itself not been in-
fluenced by them. This can be seen from the moving 
average (MA) representation, which in its simplest form 
(without short-run dynamics and deterministic com-
ponents) is given by:
 

�
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their loadings, describing how the 
common trends are transmitted to the system variables. 
The hypothesis of a zero row in α corresponds to a unit 
vector in its complement, α⊥. Thus, if the hypothesis 
of weak exogeneity of a given variable is accepted, the 
cumulated shocks to that variable alone define one of 
the common trends driving the system. As there are  
j – r common trends, the number of weakly exogenous 
variables cannot exceed j – r, i.e. three in our case.

22   I.e. j x (j – r) matrices of full column rank, such that: 
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.

The tests results (see Table A.6 in the Appendix) 
show that the German bond rate and the deviation from 
PPP are both weakly exogenous when tested individually. 
Moreover, the hypothesis of the two variables being 
jointly weakly exogenous is also accepted. We can 
conclude that the cumulated shocks to each of these 
variables define two of the three common trends pushing 
the system. As will be shown in Section 5.E, the German 
bond rate is also strongly exogenous, which means that 
this variable itself, and not just the cumulated shocks to 
it, represent a common trend. The third common trend 
is a linear combination of cumulated shocks to the Polish 
and the German inflation rates and to the Polish bond 
rate (see also equation (21) in Section 5.E). Accepting 
the hypothesis of no long-run levels feedback for the two 
variables in question means that our VAR model does 
not explain the stochastic path of the deviation from PPP, 
which would be a problem if modelling this path was 
the goal of our analysis. From that follows that we could 
reduce the dimension of our system to three and only 
include the German bond rate and the deviation from 
PPP as weakly exogenous variables in the cointegration 
space.

A second test involving the adjustment coefficient 
matrix is that of a unit vector in α, meaning that the 
variable corresponding to this vector is exclusively 
adjusting (i.e. shocks to that variable have only temporary 
effects on the other variables of the system). This can 
again be seen from (17): as a unit vector in the matrix 
α corresponds to a zero row in α⊥, shocks to the given 
variable do not enter the term , i.e. do not 
influence the level of xt in the long run. We performed 
the test for each of the endogenous variables in our 
system (see Table A.7 in the Appendix for results) and 
found no evidence of a unit vector in α at the 5 percent 
significance level. Thus, we conclude that none of the 
variables in the system is exclusively adjusting.

When testing restrictions on the parameters of β, the 
aim is to find out which of the model variables and which 
linear combinations of them are stationary. This leads 
to the identification of the “final” set of cointegration 
relations that are, ideally, economically meaningful 
equilibrium relations. As a first step, we performed 
tests of the long-run exclusion of variables from all 
cointegrating relations, i.e. tests of zero row restrictions 
on β. The results, reported in Table A.8 in the Appendix, 
show that only the German bond rate (which is also 
weakly exogenous to the system) can be excluded from 
the long-run equilibrium relations. Interestingly enough, 
the shift dummy, C1995:05, cannot be excluded from the 
cointegration space. We will draw on these results when 
formulating our final cointegration relations.

In a second step, we tested the stationarity of a 
variety of linear combinations of the system variables, 
starting from the variables themselves (see Table A.9 in 
the Appendix). We first tested for stationarity of each 
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single variable (hypotheses H1 to H5), coming to the 
conclusion that only the German inflation rate is by 
itself I(0). However, the p-value associated with that 
latter test is so low that we do not, in fact, believe that 
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 is stationary.23 Then we tested a number of relations 
involving the inflation differential 
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 (H6 to H8), 
the interest spread  
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 (H9 to H13), the domestic and 
the foreign real interest rates, it – Δpt and (H14 to H18). 
We do not report the results of all performed tests but 
rather present the outcome for the given simple relation 
and all its stationary combinations with other variables 
that we have found. For each of the hypotheses we also 
tested whether the relations are stationary when the 
shift dummy is included in the relationship but we 
only report the outcome when it was changed by the 
inclusion of the dummy.

The general outcome of this exercise is that none of 
the simple parity conditions is satisfied by the data. If  
PPP held, then the real exchange rate should be stationary 
or at least cointegrated with the inflation differential. 
However, the two variables can only be made stationary 
if the German bond rate or both bond rates are added 
to the linear combination (see H7 and H8). If UIP held, 
then the interest spread should be stationary or at least 
cointegrated with the nominal depreciation rate. We 
were not able to test the latter hypothesis directly within 
our VAR framework because the nominal rate is not 
one of the system variables.24 However, the stationarity 
of the interest spread is decisively rejected (H6). If RIP 
held, then the real bond rates would be I(0) or at least 
cointegrated with each other, and the interest spread 
would be cointegrated with the inflation differential 
(we have already shown that these both simple relations 
are non-stationary). These hypotheses are also rejected, 
though (H14, H18, H19, and H20, respectively). A linear 
combination of the interest spread and the inflation 
spread can only be made stationary by augmenting it 
with both the real exchange rate and the shift dummy 
(H22); in case of the real bond rates stationarity cannot 
be achieved even in this way (H21).

Recall from Section 4 that we expected our 
cointegration relations to be special cases of equations 
(15) and (16), or these equations themselves. Relation 
(16) turned out to be non-stationary even when 
augmented by a shift dummy (H21); therefore, there is 

23   If the German inflation rate is stationary, it cannot be cointegrated with any 
non-stationary single variable or linear combination of variables in the system 
so there was, theoretically, no point in testing e.g. the hypotheses of the infla-
tion differential or the German real bond rate being stationary. However, the 
fact that one cannot reject a hypothesis does not necessarily mean that the lat-
ter is true: the probability of accepting a false hypothesis is never zero (unless 
one adopts the strategy of never accepting the null). We thus decided to test 
such combinations that, from the purely theoretical point of view, could not be 
stationary if the German inflation rate really was I(0).
24   We tested the hypothesis of the nominal exchange rate being I(1), i.e. of 
its first difference being I(0), using a different specification of the VAR model 
where the vector of variables included the price differential, both interest 
rates, the spot rate and the domestic inflation rate, and could not reject this 
hypothesis.

no equilibrium relation between real interest rates in 
both countries and the real exchange rate. As for relation 
(15), describing a linear combination of the interest 
spread, the price differential and the real exchange rate, 
it is stationary when the level shift is accounted for 
(H22). This equation thus became our primary candidate 
for a cointegration relation. However, when testing 
the restrictions imparted in relation (15) jointly with 
those incorporating any other stationary combination 
of the system variables, we found that the restrictions 
were only borderline accepted. Moreover, previous tests 
showed that the German bond rate can be excluded from 
the cointegration space altogether. These results made us 
look for other stationary combinations which could be 
thought of as “irreducible cointegration relations” and, 
ideally, should have a plausible economic interpretation 
as long-run steady-states.25

One candidate for an irreducible cointegration 
relation is the linear combination defined by H15,   
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, which relates the domestic real 
interest rate to the foreign inflation. A relation that can be 
given economic interpretation, on the other hand, is the 
one defined by H23,
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which imposes a long-run homogeneity restriction (sum of 
the coefficients equal to zero) on the domestic and foreign 
inflation and the domestic interest rate. Its interpretation 
is as follows: the domestic inflation is partly imported and 
partly the result of inflation expectations, reflected in the 
domestic bond rate; it is also affected by the real exchange 
rate. These two linear combinations of the system 
variables are the ones that we eventually adopted as our 
cointegration relations.

E. Identification of the long-run and the short-run structure

In the previous section we established two stationary li-
near combinations of the system variables that are our 
potential cointegration relations. The restricted rank 
VAR model was then estimated subject to restrictions 
defining the two relations as well as two zero row re-
strictions on the matrix a (recall from the previous sec-
tion that it

* and pppt are individually and jointly we-
akly exogenous). The result is given in Table A.10 and 
the corresponding restricted estimate of the matrix P in 
Table A.1.c (both tables are in the Appendix). The re-
strictions on α and β have hardly changed the estimate 
when compared with previous results. Our cointegration 
relations are defined as follows:

� (18)

� (19)

25   An “irreducible cointegration relation” is a stationary linear combination 
of non-stationary variables that becomes non-stationary once any of them is 
dropped from the relation; see Davidson (1998). A theoretically meaningful 
equilibrium relation can be a linear combination of two or more irreducible 
cointegration relations.
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As can be easily seen, the first relation is just 
identified and the second is over-identified. The 
system as a whole is therefore formally (generically) 
over-identified26 and the restrictions are testable. The 
restrictions were accepted with a fairly large p-value 
based on a Likelihood Ratio (LR) test. Moreover, the 
cointegration relations are also empirically identified, 
i.e. the coefficients which have not been set to zero when 
formulating the restrictions are in fact significantly 
different from zero in the estimated system. As for 
economic identification, i.e. interpretability of the 
results, we already discussed this issue at the end of the 
previous section.

From the economic point of view, not only 
the cointegration relations but also the adjustment 
coefficients are of special interest. Based on the results 
in Table A.10, we have:�

(20)

The zero coefficient values in the last two rows of 
α are the result of the imposed restrictions; however, 
the unrestricted coefficients were insignificantly 
different from zero anyway. This means that both 
weakly exogenous variables, the German bond rate 
and the real exchange rate, do not equilibrium-adjust, 
i.e. their change in the present period is unaffected by 
the departure from equilibrium in the previous period. 
The coefficients α 12 and  α21 are insignificant so we set 
them to zero in the above equation. The reactions of the 
“truly endogenous” system variables to the departure 
from steady-states are plausible in the sense that the 
respective α coefficients are significant, have the signs 
consistent with error-correcting behaviour (i.e. there is 
no overshooting in the system)27, and are of magnitude 
which by and large “makes sense”. The Polish inflation 
rate adjusts to the first cointegration relation, CR1, 
which is the equilibrium relation for this variable. If 
the departure from CR1 in a given month is positive, 
then Δp

t 
would fall in the following month, correcting 

approximately 92% of the equilibrium error, which 
amounts to very fast adjustment. The German inflation 
rate exhibits equilibrium-correcting behaviour with 
respect to CR2 and the Polish bond rate with respect to 
both relations, although the adjustment is much slower 
than that of Δp

t
. Apart from the surprisingly high speed 

of adjustment of the Polish inflation rate, the estimated 
system seems to be economically plausible.

26   See Juselius (2006) for an intuitional exposition of generic identification 
and Johansen (1995) for technical details.
27   The i-th cointegrating relation is significantly equilibrium-correcting if the 
parameters in the i-th column of the matrix α are significantly different from 
zero and have the signs consistent with equilibrium-correcting behaviour, i.e. 
the signs opposite to those of the corresponding coefficients in the matrix β.

The over-identified long-run structure described 
above was the point of departure for the identification 
of the short-run structure: when testing restrictions on 
short-run parameters, we kept the parameters b^c fixed 
at their previously estimated values.28 The VAR model 
discussed so far is heavily overparametrised; especially 
the short-run matrix Γ1 and the deterministic components 
matrix Φ contains many insignificant coefficients. Our 
goal is now to achieve a parsimonious parametrisation 
of the short-run reduced-form VAR model. Based on 
parameter significance and the results of the LR test of 
over-identifying restrictions, we were able to impose a 
total of 56 restrictions on the short-run structure.

The results are reported in Table A.11 in the 
Appendix; the columns represent the equations of 
the system. The unlagged “endogenous” variables29 
have only been included in their own equations and 
the corresponding unit matrix of coefficients is not 
reported to save space. As can be seen from the table, 
most of the coefficients of the matrix Γ1 could be set 
to zero without significantly changing the value of the 
likelihood function; only in the equation of the Polish 
interest rate and the deviation from PPP are the lagged 
differences of (some) system variables significant.

A particularly striking result is that of all coefficients 
in the German interest rate equation equal to zero. 
Combined with the results of the analysis in Section 5.D, 
where  

*
ti  was found to be weakly exogenous (individually 

and jointly with the real exchange rate), this means that 
the German bond rate is strongly exogenous to the 
system and that the corresponding equation could be 
excluded from the model with no loss of information. As 
already mentioned in Section 5.D, another conclusion is 
that one of the stochastic trends to the system is *

ti  itself, 
not just shocks to it.

As for the adjustment coefficients, the results are 
similar to those described above, with the difference 
that the German inflation rate now adjusts to both 
cointegration relations and the speed of adjustment of 
the Polish inflation rate is somewhat lower. All in all, 
our restricted reduced-form VAR does not entail any 
results that are inconsistent with economic theory or 
with the outcome of our previous analysis. Moreover, 
the residuals are essentially uncorrelated, as can be seen 
from the bottom panel of Table A.11: only the correlation 
coefficient between the residuals of the first and the fifth 
equation is significantly different from zero. Thus, our 
reduced-form model can be interpreted as a structural 
VAR model.

Based on the estimated over-identified system (20), 
the MA representation is as follows:

28   The statistical motivation for this is the superconsistency of the estimator 
b^  (or b^c).
29   The term “endogenous” is in quotation marks because it stands for the vari-
ables that stand on the left-hand side of the system (including the weakly exog-
enous ones, like the real exchange rate and the German bond rate in our model), 
not necessarily those that are actually explained by the system.
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						      (21)

The estimates of a^, defining the common trends, 
and b

~
^, defining their loadings, are given in Table A.12 

in the Appendix; for simplicity we set insignificant 
coefficients to zero in the above equation. Bearing in 
mind the result of strong exogeneity of the German bond 
rate, we have:				  

(22)

i.e. the German bond rate itself, and not just shocks 
to it, constitutes the second common trend, which drives 
both bond rates in the long run. The third common trend, 
driving prices in both countries and the real exchange 
rate, is the cumulated sum to that latter variable. The first 
trend is a linear combination of cumulated shocks to the 
three endogenous variables, and it determines the levels 
of these three variables in the long run. We have not 
tried to find the structural MA representation or to give 
the shocks labels, i.e. to interpret them as “structural” 
shocks; this is a task for our future research. However, 
we note that the second trend, the German bond rate, 
can be interpreted as a “safe haven” or portfolio balance 
effect (see Juselius, MacDonald 2004a), which is related 
to the important role of the German mark – or rather, 
the (future) EMU for which Germany is a proxy – for the 
Polish economy.

6. Summary and conclusions

In this paper we tried to identify a set of economically 
meaningful long-run equilibrium relations that wo-
uld reflect the international parity conditions: the pur-
chasing power parity, the uncovered interest parity and 
the real interest parity. As these simple parities seldom 
hold empirically, the general idea was to model them 
jointly in order to uncover the dynamic structure un-
derlying the stochastic behaviour of prices, interest rates 
and the real exchange rate in Poland versus the EMU, re-
presented by Germany. The empirical analysis, based on 
a cointegrated VAR model, not only showed that the sim-
ple parities are inconsistent with our data set but it also 
failed to identify cointegration relations that would be li-
near combinations of all three parities.

Therefore, the question arises why the parities that 
are so well-established in the economic theory could not 
be pinned down when analysing the Polish-German data 
set, even when we analysed them jointly and allowed 
for time trends and level shifts in the data. We see the 

rationale for this in the fact that our sample was rather 
short, and covered the period of Poland’s transition from 
a centrally planned to a market economy. Therefore, 
the parities which are supposed to hold in the long run 
could not (yet) be identified within our model. One has 
probably to wait several years before these long-run 
relations can actually be reflected in the data.

What the analysis did establish, though, is a 
VAR model with reasonably stable parameters and 
remarkably well-behaved residuals, which let us 
draw interesting conclusions about the stochastic 
behaviour of the variables of interest. We identified 
two meaningful long-run equilibrium relations that the 
system was adjusting to: one describing the domestic 
(i.e. Polish) inflation rate as being partly imported (from 
Germany), partly the result of inflation expectations, 
and partly affected by the real exchange rate, and 
the other bringing together the domestic real interest 
rate and the foreign inflation. The three variables 
of the system that can be considered endogenous 
– the Polish inflation and interest rate as well as the 
German inflation rate – exhibit equilibrium-adjusting 
behaviour, i.e. they are pulled back to the steady-state 
once they have been pushed away from it. The two 
remaining variables – the real exchange rate and the 
German interest rate – are weakly exogenous to the 
system, i.e. they affect the stochastic behaviour of the 
endogenous variables but are not affected by them.

The system is pushed by three stochastic common 
trends: one defined as cumulated shocks to the real 
exchange rate, one defined as the cumulated shocks 
to the German bond rate (and the bond rate itself, as 
it turned out to be strongly exogenous), and one being 
a linear combination of shocks to the endogenous 
variables. The second of these common trends can be 
interpreted as the “safe haven” effect, reflecting the 
important international role of the German mark in 
formerly communist economies of Central and Eastern 
Europe. We did not try to label the other two common 
trends driving the system or to identify structural shocks 
hitting it; we leave this task for our future research.

Referring to the question asked in the introduction 
to this paper – whether Poland is “ripe” for the 
common monetary policy – the answer is not a clear-
cut “no”, despite the empirical failure of the parities. 
As the Polish-German inflation rates, interest rates, 
and the real exchange rate have followed a pattern that 
is consistent with long-run equilibrium-correcting 
behaviour, and because the estimated system shows 
such remarkable degree of stability, it can be argued 
that Poland has shown a tendency to converge to 
Germany both in nominal and in real terms. Therefore, 
we believe that it is rather sooner than later that 
Poland will be able to join the euro without fearing 
major turbulences.
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Appendix 
 
 
Tables

Table A.1. Estimate of the matrix Pa

a The unrestricted model
-0.922  

(-10.42)
0.383   
(1.54)

0.337   
(2.32)

0.666   
(0.71)

-0.024   
(-5.71)

-0.002   
(-1.15)

0.010   
(0.24)

-1.063   
(-8.93)

0.013  
(0.19)

-0.138   
(-0.31)

0.002   
(0.82)

-0.001   
(-1.43)

0.027   
(3.17)

0.059   
(2.46)

-0.050   
(-3.61)

0.202   
(2.26)

-0.001   
(-1.84)

0.001   
(3.33)

0.005   
(1.26)

0.006   
(0.56)

0.008   
(1.41)

-0.095   
(-2.50)

0.000   
(1.69)

-0.000   
(-0.62)

0.160  
(0.28)

2.457   
(1.54)

-0.407   
(-0.44)

6.399   
(1.07)

-0.026   
(-0.98)

0.025   
(2.42)

Log-Likelihood = 4698.703          Trace correlation = 0.539
b The model with rank restriction (r = 2)

-0.934   
(-10.65)

0.419   
(1.70)

0.371   
(8.55)

0.438   
(3.31)

-0.022   
(-10.13)

-0.003   
(-5.35)

0.003   
(0.08)

-1.031  
(-8.74)

0.090   
(4.31)

-0.546   
(-8.60)

0.004   
(3.97)

-0.002   
(-6.93)

0.025   
(2.86)

0.070   
(2.90)

-0.017   
(-3.97)

0.031   
(2.41)

0.000   
(1.22)

0.000   
(4.11)

0.005  
(1.26)

0.005   
(0.46)

-0.002   
(-1.34)

0.001   
(0.26)

0.000   
(0.90)

0.000   
(1.16)

0.008   
(0.01)

2.785   
(1.75)

-0.249   
(-0.89)

1.470   
(1.72)

-0.011   
(-0.77)

0.005   
(1.40)

Log-Likelihood = 4686.647          Trace correlation = 0.518
c The model with rank restriction (r = 2) and restricted long-run parametersb

-0.938   
(-10.72)

0.266   
(1.07)

0.437   
(10.40)

0   
(.NA)

-0.021   
(-10.62)

-0.003   
(-9.22)

0.009   
(0.22)

-1.038   
(-8.72)

0.032   
(1.60)

0   
(.NA)

0.002  
(1.83)

-0.001   
(-3.96)

0.022   
(2.56)

0.055   
(2.24)

-0.013   
(-3.00)

0   
(.NA)

0.000   
(2.07)

0.000   
(3.39)

0   
(.NA)

0   
(.NA)

0   
(.NA)

0   
(.NA)

0  
(.NA)

0   
(.NA)

0   
(.NA)

0  
(.NA)

0   
(.NA)

0   
(.NA)

0   
(.NA)

0   
(.NA)

Log-Likelihood = 4682.817          Trace correlation = 0.515
a t-statistics in brackets     b Two last rows in a equal to 0; restrictions on b : see equations (18)-(19) in the text
Source: own calculations

Table A.2. Trace test of cointegration rank

For the full model

j – r r Eigenvalue Trace test  
statistics

Trace test  
statisticsa 95% critical value p-value p-valuea

5
4
3
2
1

0
1
2
3
4

0.496
0.401
0.107
0.031
0.024

194.3
97.0
24.1
8.0
3.5

183.7
92.3
23.1
7.5
2.1

63.8
42.8
26.4
13.5
3.9

0.000
0.000
0.090
0.281
0.065

0.000
0.000
0.115
0.325
0.148

For the model without deterministic components (except for seasonal dummies)

j – r r Eigenvalue Trace test  
statistics

Trace test  
statisticsa 95% critical value p-value p-valuea

5
4
3
2
1

0
1
2
3
4

0.425
0.340
0.056
0.034
0.013

152.4
73.9
14.9
6.7
1.8

144.0
70.3
14.2
6.1
1.4

69.6
47.7
29.8
15.4
3.8

0.000
0.000
0.792
0.615
0.176

0.000
0.000
0.829
0.685
0.233

a  trace test statistics and p-values based on the Bartlett small-sample correction
Source: own calculations.
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Table A.3. Roots of the companion matrix for different ranks of the matrix P 

Modulus of: ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10

r = 0 1.00 1.00 1.00 1.00 1.00 0.43 0.38 0.19 0.13 0.13
r = 1 1.00 1.00 1.00 1.00 0.41 0.41 0.41 0.38 0.14 0.14
r = 2 1.00 1.00 1.00 0.44 0.44 0.41 0.36 0.36 0.09 0.09
r = 3 1.00 1.00 0.84 0.44 0.44 0.43 0.36 0.36 0.09 0.09
r = 4 1.00 0.98 0.85 0.44 0.44 0.43 0.36 0.36 0.12 0.12
r = 5 0.98 0.98 0.85 0.43 0.43 0.42 0.36 0.36 0.11 0.11

Source: own calculations.

Table A.4. Unrestricted estimate of the matrix aa

α1 α2 α3 α4 α5

1.027
(10.42)

-0.608
(-2.71)

0.490
(0.59)

-0.027
(-0.13)

-0.235
(-0.66)

-0.157
(-3.34)

-0.875
(-8.16)

0.531
(1.34)

-0.063
(-0.61)

-0.059
(-0.35)

-0.015
(-1.59)

0.085
(3.96)

0.204
(2.58)

-0.029
(-1.39)

-0.004
(-0.13)

-0.004
(-1.01)

0.009
(0.96)

-0.069
(-2.05)

-0.012
(-1.36)

-0.016
(-1.09)

0.407
(0.65)

2.378
(1.66)

6.801
(1.29)

1.488
(1.08)

-3.359
(-1.48)

a t-statistics in brackets
Source: own calculations.

Table A.5. Specification tests

Full rank model Restricted rank model (r = 2)
χ2(v) p-value χ2(v) p-value

Tests for autocorrelation:
Ljung-Box
LM(1)
LM(2)

807.9 (825)
29.5 (25)
21.9 (25)

0.658
0.243
0.642

808.9 (840)
33.4 (25)
23.3 (25)

0.774
0.120
0.558

Test for normality 22.4 (10) 0.013 22.8 (10) 0.012
Tests for ARCH:
LM(1)
LM(2)

241.6 (225)
465.6 (450)

0.213
0.296

231.4 (225)
473.2 (450)

0.217
0.370

Trace correlation 0.539 0.518

Univariate residual analysis Full rank model Restricted rank model (r = 2)

Equation Skewness  
kurtosis R2 Skewness / kurtosis R2

0.23   3.90 0.829 0.25   3.92 0.828

0.10   3.07 0.717 0.12   3.01 0.713

0.10   4.08 0.632 0.16   4.07 0.610

0.07   3.95 0.196 -0.05   3.83 0.155

-0.24   2.87 0.388 -0.35   3.08 0.367

Equation ARCH(2)a Normalitya ARCH(2)a Normalitya

4.6   
(0.100)

6.5   
(0.038)

4.3   
(0.117)

6.7   
(0.036)

0.1   
(0.969)

0.6   
(0.746)

0.2   
(0.895)

0.5   
(0.769)

10.5   
(0.005)

8.7   
(0.013)

9.7  
(0.008)

8.4   
(0.015)

0.8   
(0.677)

7.3   
(0.027)

0.7   
(0.696)

6.0   
(0.050)

4.6   
(0.099)

1.6   
(0.457)

3.8   
(0.147)

3.0   
(0.221)

a p-values in brackets
Source: own calculations.
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Table A.6. Tests of weak exogeneity (zero row in α)a
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jointly

79.2  (0.000) 51.3  (0.000) 14.2  (0.001) 1.7  (0.426) 2.9  (0.240) 1.7  (0.426)

a LR test, χ2(2), p-values in brackets
 Source: own calculations.

Table A.7. Tests of unit vector in αa

6.8  (0.077) 11.0  (0.012) 50.6  (0.000) 63.4  (0.000) 65.7  (0.000)
a LR test, χ2(3), p-values in brackets

Source: own calculations.

Table A.8. Tests of long-run exclusiona

C1995:05

77.7  (0.000)  60.0  (0.000) 7.2  (0.028) 1.5  (0.463) 26.9  (0.000) 9.0  (0.011)
59.9* (0.000)  46.3* (0.000) 5.5* (0.063) 1.2* (0.552) 20.7* (0.000) 7.0*  (0.031)

a LR test, χ2(ν), p-values in brackets; * = Bartlett-corrected values
Source: own calculations.

Table A.9. Tests of stationarity of single relations

C1995:05
p-value

Tests of stationarity of single variables
H1 1 0 0 0 0 0 67.9 (5) 0.000
H2 0 1 0 0 0 0 8.0 (5) 0.155
H3 0 0 1 0 0 0 70.5 (5) 0.000
H4 0 0 0 1 0 0 68.3 (5) 0.000
H5 0 0 0 0 1 0 70.3 (5) 0.000
Tests of inflation spread relations
H6 1 -1 0 0 0 0 70.6 (5) 0.000
H7 1 -1 0 -2.93 0.03 0 4.21 (3) 0.240
H8 1 -1 -0.24 -1.65 0.03 0 1.6 (2) 0.461
Tests of interest spread relations
H9 0 0 1 -1 0 0 70.8 (5) 0.000
H10 0 -893.3 1 -1 0 -0.83 4.8 (3) 0.185
H11 -1.38 -9.8 1 -1 0 -0.02 0.6 (2) 0.725
H12 -1.86 0 1 -1 -0.04 -0.01 0.5 (2) 0.783
H13 0 -43.74 1 -1 0.11 -0.06 1.2 (2) 0.538
Tests of real interest rate relations
H14 -1 0 1 0 0 0 41.9 (5) 0.000
H15 -1 -13.7 1 0 0 -0.02 3.4 (3) 0.341
H16 -1 -5.3 1 -3.18 0 -0.01 0.1 (2) 0.956
H17 -1 -26.91 1 0 0.04 -0.04 1.255 (2) 0.534
H18 0 -1 0 1 0 0 25.4 (5) 0.000
Tests of other relevant relations
H19 -1 166.35 1 -166.35 0 0 25.4(4) 0.000
H20 1 -1 -1.07 1.07 0 0 43.7 (4) 0.000
H21 -1 4.14 1 -4.14 -0.02 -0.00 10.1 (2) 0.007
H22 1 -1 -0.51 0.51 0.02 0.00 1.3 (2) 0.515
H23 1 -0.54 -0.46 0 0.02   0.00 0.2 (2) 0.891

Source: own calculations.
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Table A.10.  Estimates of the long-run matrices for the restricted model a

a1     a2 C1995:05

-0.922
(-10.62)

0.016
(0.98)

β1́
1

(.NA) 
-0.543
(-8.58)

-0.457
(-7.22)

0
(.NA)

0.022
(8.00)   

0.003
(2.71)

0.076
(1.83)

0.067
(8.62) β2́

-1
(.NA)

14.881
(-9.11)    

-1
(.NA)

0
(.NA)

0
(.NA)

-0.014
(-2.12)

0.018
(2.07)

-0.004
(-2.71)

0
(0.00)

0
(0.00)

0
(0.00)

0
(0.00)

Test of restricted model:   χ
2
(7)=7.7               p-value = 0.364 Log-Likelihood = 4682.817

a Two last rows in a equal to 0; restrictions on b: see equations (18)-(19) in the text; t-statistics in brackets
Source: own calculations

Table A.11.  A parsimonious parameterisation of the short-run reduced-form VAR modela

-0.0232   
(-3.34)

0.3004   
(4.89)

0.6825   
(3.25)

0.1915   
(2.57)

  
b 0.0673  

(10.6)
-0.0028   
(-2.12)

LR test of over-identifying restrictions:  χ2(56)=69.2     p-value = 0.110

Residual correlationsc (residual standard deviations on the diagonal):

0.0038

0.0750 0.0018

-0.0449   0.0984 0.0004

0.0694  0.0978 0.1664 0.0002

0.2887 -0.0727 0.0105 0.0029 0.0236

a Unlagged “endogenous” variables only appear in their own equations; seasonal and other dummies are not reported; t-statistics in brackets
b CRi = i-th cointegration, i=1,2 (see equations (18)-(19) in the text)
c Significant correlations: ± 0.1667 or larger

Source: own calculations
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Table A.12. MA representation of the restricted modela

0.484 
(3.20)

0.528
(1.46)

-0.026
(-10.35)

0.024
(2.42)

0.059
(2.31)

1
(NA)

0
(NA)

0
(NA)

0.062
(5.11)

0.030
(1.05)

0.002
(9.07)

0
(.NA)

0
(.NA)

0
(.NA)

1
(.NA)

0
(.NA)

1.408
(9.89)

0.978
(2.89) 

0.001
(0.49)

0
(.NA)

0
(.NA)

0
(.NA)

0
(.NA)

1
(.NA)

0.033
(0.87)

1.034
(11.35)

0.001
(1.67)

8.571
(1.24)

-2.883
(-0.18)

1.208
(10.67)

a Two last rows in a equal to 0; restrictions on b: see equations (18)-(19) in the text; t-statistics in brackets
Source: own calculations 
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Figures

Figure A.1. Data in levels and differences
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a. Prices and inflation 

Price level Poland

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
0.25

0.50

0.75

1.00

1.25

1.50

Inflation rate Poland

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Change in the inflation rate Poland

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.02

-0.01

0.00

0.01

0.02

0.03

Price level Germany

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225

Inflation rate Germany

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

Change in the inflation rate Germany

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.008
-0.006
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008

b.  Treasury bill rates 

Treasury bill rate Poland

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Change in the Treasury bill rate Poland

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.0030

-0.0024

-0.0018

-0.0012

-0.0006

0.0000

0.0006

0.0012

0.0018

Treasury bill rate Germany

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

Change in the Treasury bill rate Germany

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.0004
-0.0003
-0.0002
-0.0001
-0.0000
0.0001
0.0002
0.0003
0.0004
0.0005

c. Exchange rate and the deviation from PPP 

Spot exchange rate

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Change in the spot exchange rate

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.050

-0.025

0.000

0.025

0.050

0.075

0.100

Deviation from PPP

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.08
0.00
0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64

Change in the deviation from PPP

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.100

-0.075

-0.050

-0.025

-0.000

0.025

0.050

0.075

Source: own calculations

Figure A.2. Cointegration relationsa

 a. Unrestricted model (r  = 5) 
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a The upper panel of each graph depicts the given cointegration relation based on the full model and the lower panel the same cointegration relation based on the con-

centrated model (without the short-run dynamics and the deterministic components). The order of the cointegration relations is that of decreasing stationarity.

Source: own calculations.

 a. Unrestricted model (r  = 5) 

Beta1'*Z1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-10
-8
-6
-4
-2
0
2
4
6
8

Beta1'*R1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-3.6

-2.4

-1.2

0.0

1.2

2.4

3.6

Beta4'*Z1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-2.4

-1.6

-0.8

-0.0

0.8

1.6

2.4

Beta4'*R1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-2.4

-1.6

-0.8

-0.0

0.8

1.6

2.4

Beta2'*Z1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-7.5

-5.0

-2.5

0.0

2.5

5.0

Beta2'*R1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-2

-1

0

1

2

3

Beta5'*Z1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-3

-2

-1

0

1

2

3

Beta5'*R1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

Beta3'*Z1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-2.7

-1.8

-0.9

-0.0

0.9

1.8

2.7

Beta3'*R1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-3.2

-2.4

-1.6

-0.8

-0.0

0.8

1.6

2.4

b. Restricted model ( r  = 2) 

Beta1'*Z1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.024

-0.016

-0.008

0.000

0.008

0.016

0.024

Beta1'*R1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.0100

-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Beta2'*Z1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Beta2'*R1(t)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-0.0036

-0.0027

-0.0018

-0.0009

0.0000

0.0009

0.0018

0.0027



24 Makroekonomia  Bank i  Kredyt  marzec 2008

Figure A.3. Recursively calculated trace test statisticsa

a The base period for the forward test is 1994:04 to 1999:12 and for the backward test 1999:12 to 2006:01
Source: own calculations

a. Forward recursive test b. Backward recursive test 
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